Assignment: The Pathophysiology of Stroke

Assignment: The Pathophysiology of Stroke

Assignment: The Pathophysiology of Stroke

Case Study Mr Sam Kwon

Mr Sam Kwon is a 74-year-old man (UR number 684421). He was brought in by paramedics with right-sided hemiparalysis, aphasia and facial drooping. He has a history of hypertension, congestive heart failure and type 2 diabetes mellitus. He takes oral hypoglycaemic agents. He has also smoked a pack of cigarettes a day for approximately 40 years.

Discuss the following in relation to this case:

Succinctly discuss the underlying pathophysiology in relation to the presenting signs and symptoms of Mr Kwon

Discuss the pharmacological management in relation to symptom relief and ongoing management. Link your discussion to the relevant pathophysiology of the condition.

Sample Draft Solution:

Introduction

Sample Disclaimer

Stroke is a neurological disease that is the cause of death and disability all around the world. The pathophysiology of the stroke is complicated and generally involves inflammatory pathways, excitotoxicity, oxidative damage apoptosis, angiogenesis and ionic imbalances (Brown et al.,2015). A stroke occurs when there is a sudden death of the cells in some of the parts of the brain causing a lessening of the blood flow in the brain. This paper would describe the pathophysiology of stroke linking with the symptoms manifested by Mr. Kwon. The paper would also throw light on the pharmacological management in relation to the symptoms displayed.

Pathophysiology

Ischeamic stroke can occur due to the sudden blockage of the cerebral artery. The region of the brain supplied by this artery can become ischemic and can cause an infarct. And due to high metabolic demands of brain an irreversible damage might occur within few minutes of ischemia (Bullock & Hales, 2016).

The concerned patient might have suffered from Ischemia, which might have been manifested in the form of thrombotic stroke, embolic stroke or systemic hypo perfusion or venous thrombosis. Thrombosis might have occurred due to the deposition of the atherosclerotic plaque within the walls of the arteries and a thrombi can easily develop on the surface of the atherosclerotic lesions (Bullock & Hales, 2016). Low respiratory reserve and the complete dependence of the aerobic metabolism make the tissues of the brain vulnerable to the effects of ischemia. Thus a part of the brain parenchyma suffers from immediate death, while the others might be injured partially with the potential to recover. Ischemia causes damage to the brain by the activation of the ischemic cascade that causes the local depletion of oxygen and thus the high energy phosphate compound is not produced for the brain cells to survive (DeLaune et al., 2016).

The case study reveals that Mr. Sam Kwon had suffered from a stroke because the clinical manifestation shown by Mr. Kwon complies with the probable signs and the symptoms of stroke, which are facial drooping, impaired speech, right-sided hemiparalysis and aphasia Individuals having stroke on the right side of the brain are likely to have problems with the spatial-perceptual orientation (Brown et al.,2015).

The case study reveals that Mr. Kwon had previous medical history of hypertension, congestive heart failure and type 2 diabetes. High blood pressure can weaken the blood vessels of the brain causing them to narrow and rupture. Due to the strain on the blood vessels, the heart has to keep functioning harder for keeping the blood circulating. Once the blood vessels are weakened they are likely to form a block by the atheromatous deposits (Burke, Wissel & Donnan, 2013). The atheroma and the ischemic consequences damage the cerebral arterioles and the brain tissues. One might expect that slowing down the rate of the cerebral flow can give more time for the clots to form.

According to studies, people who have type 2 diabetes are two to four times more likely to suffer from ischemic strokes. T2D also helps in the formation of heart diseases or have strokes at an earlier age in comparison to those without diabetes. People with diabetes have excess glucose in their blood while the cells are deprived of the glucose for making the energy (Chen, Ovbiagele & Feng, 2016). Over time the glucose leads to clots or fatty deposits on the inner walls of the blood vessels for causing blockages or clots. These blocks cut off the blood supply to the brain. There are several possible mechanisms by which diabetes can cause stroke in elderly people. This involves dys-functioning of the vascular endothelium, the systemic inflammation, age related arterial stiffness and the thickening of the basal membrane of the capillaries.

The vascular endothelium functioning is necessary for maintaining the function and the integrity of the blood vessels and controlling of the vasomotor system. Vasodilatation is mediated by nitric oxide. People with diabetes have impaired NO- mediated vasodilatation, due to the decreased reactivity of the smooth muscles to NO. Furthermore individuals with T2D have decreased elasticity of the blood vessels (Chen, Ovbiagele&Feng, 2016). Furthermore, a heightened inflammatory response is also seen in individuals with T2D and is responsible for the formation of the atherosclerotic plaque. Some of the serum markers such as the C-reactive protein, cytokines and adiponectin are found in people with T2D(Chen, Ovbiagele&Feng, 2016).

T2D can also be linked to congestive heart failure and the rate of stroke is increased in people with congestive heart failure. Studies have shown that 10-24 % of the patients who have had stroke had previous history of congestive heart diseases (Kim & Kim, 2018). The risk factors associated to stroke in heart failure are as follows:- The disrupted ventricular function, the restrictive diastolic filling patters, calcified lesions in the aorta and the echo contrast between the left and the right aorta(Kim & Kim, 2018). Moreover HF creates a stroke prone environment within the body and is likely to facilitate cognitive impairment in patients.

Another clinical priority that can be identified in this case study is that the patient had been a chain smoker, in spite of the multiple clinical issues. A vast number of literature have admitted the established the risk factors for all kinds of stroke. The mechanisms by which smoking can trigger the risks of smoke are carboxyhemoglobinemia, increased levels of fibrinogen, reduced HDL cholesterol and increased aggregability of the platelets (Shah&Cole, 2010). Studies involving animal models have proven the toxic effects of a compound 1, 3-butadiene, present in tobacco smoke. They have direct effect on the acceleration of the atherosclerosis and arterial damage, leading to stroke.

Pharmacologic management

The initial goal of the management of stroke is the assessment with proper neuro-imaging techniques. Secondly, the administration of the thrombolytic agents and generalized supportive care should be provided.

Incomplete Solution …